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An analysis is made of the stability of an unsteady basic flow of a conducting 
fluid in the presence of a parallel magnetic field. The particular profile investi- 
gated is the classical Kelvin-Helmholtz profile modified by the addition of an 
oscillatory component. Two cases are considered in detail: that of a perfectly 
conducting fluid and that of a poorly conducting fluid. The investigation leads, 
in both cases, to an equation of the Hill type. It is concluded that the magnetic 
field has a stabilizing influence but is nevertheless unable to suppress the 
Kelvin-Helmholtz instability in an unsteady (basic) flow. 

1. Introduction 
The subject of the stability of unsteady flows is of some current interest. 

However, the question of what is meant by the stability (or instability) of a time- 
dependent basic flow is itself unsettled, though some discussion of this matter 
may be found in Conrad & Criminale (1965) and in Shen (1961). This degree of 
uncertainty in the definition of stability does not exist in the case of a flow which 
has an oscillatory time dependence. It is with such a flow that we are concerned 
here. For a basic Aow consisting of a steady component together with a compo- 
nent that is periodic in time the flow is stable if all (small) perturbations remain 
small €or all time, unstable if they do not. 

The type of behaviour that the oscillatory component in the basic flow gives 
rise to is conveniently illustrated by the problem of a simple pendulum which is 
constrained to move under the influence of a vertical oscillation applied to the 
support end of the pendulum (see Stoker 1950). Such a system is described by an 
equation of the Mathieu type. In  the case of a fluid flow a somewhat related 
situation has been investigated by Kelly (1965). Kelly considered the effect of 
an oscillatory component in the basic velocity on the stability of the classical 
Kelvin-Helmholtz profile. Again, the Mathieu equation arises. 

The use of a discontinuous profile (such as in the work of Kelly) in fluid stability 
theory warrants some comment. In the analysis of such a complex situation as the 
stability of an unsteady flow any simplification is welcome, provided no undue 
distortion arises. Drazin (1961), in an investigation of the use of discontinuous 
profiles in relation to the Orr-Sommerfeld equation, has shown that such a 
practice is physically justifiable for long waves. Thus, in treating the stability of 
the (unsteady) Kelvin-Helmholtz profile we shall adopt this outlook and our 
results will only be physically realistic for long waves. 
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The effect of a magnetic field on the stability of a steady flow field has received 
considerable attention (see, for example, Chandrasekhar 1961). For an unsteady 
flow field no such study exists. The problem is of interest for its novelty: effects 
arise in the analysis of time-dependent basic flows that are entirely absent in 
their steady counterparts. Also, coupled with the effect of the oscillatory com- 
ponent in the basic velocity is the effect of the magnetic field as it interacts with 
the flow. We shall consider such interactions in this paper. 

The effect of an oscillatory magnetic field (in addition to a steady component) 
on a steady velocity distribution has been investigated by Drazin (1967) with the 
intention of determining whether such an oscillatory field is more stabilizing than 
the corresponding steady one. He concludes that, for a non-dissipative vortex 
sheet, it is 'less efficient to stabilize the vortex sheet with an oscillatory field 
than a steady one '. We shall take this to be the case in our treatment, which 
includes magnetic dissipation, and therefore consider only a steady basic magnetic 
field. A more complete treatment would, however, be of some interest. 

In this paper we investigate the stability of an unsteady basic flow of a con- 
ducting fluid in the presence of a steady magnetic field. Following Kelly (1965), 
we consider the basic flow to be the time-dependent Kelvin-Helmholtz one, and 
the magnetic field is taken to be parallel to the basic flow. To investigate the 
effect of the field we consider in detail the two extremes of a large and small 
magnetic Reynolds number. The fluid has a density stratification, and both 
two- and three-dimensional disturbances are considered. The case of a basic flow 
with an oscillatory component small compared with the mean flow is considered 
in detail. 

2. Basic equations 
We consider an incompressible inviscid fluid of density p, uniform conductivity 
and magnetic permeability p. In  a Cartesian co-ordinate system (xl, x2, xg) the 

basic state that we wish to consider is 

(2.1) 

where v denotes the fluid velocity, H the magnetic field and r time. The time- 
dependent shear profile of interest is 

v = v, = (qJx2, T), O , O ) ,  
H = H, = (H,, 0, 0)) H, a constant, 

x2 ' "9 
' 0  = { - U,+ (plel/pz) coswlr, x2 < 0, 

u, + €1 cos w1 7, 

where the density in the basic state is given by 

The quantities pl, p2, wl, el and U, are all constants. The amplitudes occurring in 
(2 .2 )  are chosen so that the pressure gradient in the basic state is continuous 
across the interface x2 = 0. 
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where v, denotes the perturbation velocity and h, the perturbation magnetic 
field. Here k, and k,  are positive constants. Then it may be shown (see Drazin 
1967; Stuart 1954) that v and II. satisfy the (dimensionless) equations 

L@ - iav = R,l A$, (2.4) 

 LA^ - ia(aw/ayZ) = i a ~ 2 ~ $ ,  (2.5) 
where 

v2 = U0v, v0 = UoU(y,  t ) ,  h, = Ho+, xl = l ~ ,  x2 = ly,  X ,  = 12, 

a = lk,, y =lk,, r = IUGlt, R, = 4 ~ p d U , ,  A2 = pcH$/(4~pU$, 

and 1 is a characteristic length scale. The operators L and A are defined by 

L = (slat) +i~lu, A = (a2/ay2) - ~ 2 ,  

where h2 = a2 + yz. In the above R, is the magnetic Reynolds number and A the 
Alfvkn number. 

The velocity profile of interest, equation (2.2), may now be expressed in the 
form 

(2.6) U2(t) = - 1 + Ep, COS wt, y < ' 0, "1 U = {  
U,(t) = l+&pzcoswt, 

where E and w are positive constants. 
TO investigate the stability of the basic state (2.6) it is necessary to consider 

the nature of the solution of (2.4) and (2.5) subject to the appropriate boundary 
conditions. These conditions may be obtained as follows. 

In the basic flow the interfaoe is the plane y = 0; in the disturbed flow we 
denote the interface by y = cl(x,  x ,  t ) .  Kinematically, we require (see Lamb 1932, 
p. 7) that 

( i + V . V )  (y-t,) = 0, 

which, when linearized, gives 

Lc = v(0 , t )  at y = 0, (2.7) 

where 5, = <(t)exp(iax+iyz). Equation (2.7) expresses the continuity of the 
normal component of the velocity across the interface. 

In  addition to (2.7) we require two further boundary conditions. Clearly, one 
such condition is provided by the requirement of boundedness of v and $: 

v,@+O as [yl-+co. ( 2 . 8 )  

The remaining boundary condition may be obtained by considering the first 
integral of (2.5) and use of (2.4). In  $ 5  3 and 4 we shall consider two special cases 
of (2.4) and derive the remaining boundary condition as appropriate. 

5-2 
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3. Ideally conducting fluid 
If the fluid may be considered as a perfect conductor then we may approximate 

(2.4) by 
iclv = Ly?, (3.1) 

L$ = 0. ( 3 4  

(3.3) 

and (2.5) may be expressed solely in terms of y?: 

For the velocity profile (2.6) equation (3.2) reduces to 

(L2 + a2A2) Ay? = 0, 

which has a solution, bounded at  infinity, of the form 

where f and g are to be determined by the conditions pertaining a t  the interface. 
These conditions consist of that given by (2.7), and the condition 

where the notation 

for any function $ is used. Boundary condition (3.5) follows from consideration 
of the first integral of (3.2) across the interface. Since for both y > 0 and y < 0 the 
term a2U/ay2 is zero, the only contribution this term makes is through the 
boundary conditions. This method of determining the appropriate boundary 
condition is similar to that used by Drazin (1961). 

Application of conditions (2.7) and (3.5) to the form (3.4) leads to an equation 
for [( t ) ,  namely 

t)l 3 $(O + 9 t )  - $40 - 9 t )  

(3.6) 

d26 a6 -+~ia(alUl+a2U2) -+ia [+a"2((B2-alU~-a2U~)[ = 0, 
at2 at 

where 
a1 = P l / h  +Pa), a2 = P2/(P1 +P2L B2 = PH;/[27TU:(PI+P2)1. 

The substitution 

<( t )  = ~ ( c t )  exp ( - iaSt(a1 U, + a2 u2)dt) 

(d2C/dt2) + clZ(A2 - a1a2(U1 - U2)2) C = 0. 

0 

reduces (3.6) to the more convenient form 

(3.7) 

The case of a time-dependent shear profile for the flow in the absence of a 
magneticJieZd has been investigated by Kelly (1965). Kelly allowed for the effects 
of gravity and surface tension and derived an equation similar to (3.7). Compari- 
son of this equation (Kelly's equation (3.11)) with (3.7) shows that the effect 
of a magnetic field is equivalent to a surface tension T (T f pk2, Hi/[277(kZ, + k34] ) ,  
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a result well known in this connexion. Kelly’s discussion of the effect of surface 
tension on the unsteady Kelvin-Helmholtz flow is therefore also applicable 
(with slight changes) to the hydromagnetic system considered here. In  order to 
facilitate comparison with Kelly’s results it is convenient to include the effects 
of gravity g = (0, -9 ,  0) and surface tension T in our analysis.? 

For the velocity profile (2.4), with E + 0, equation (3.7) is of the Hill type (see 
Whittaker & Watson 1969, p. 406). In terms of the variable .i = Swt, and allowing 
for the effects of gravity and surface tension, the modified version of (3.7) may be 
written in the form 

( d 2 g p 2 )  + (8, + 28, c ~ s  2.i + 2 4  cos 4.i) g = 0, (3.81 
where 

8, = ( 4 1 ~ ~ )  [h(a2 - a,) F-l +a2A2 + h3a1 W-l- 4a2ala2 - 9 ~ ~ a ~ a 2 ~ ~ ( / 1 2  - ~ 1 ) ~ ] ,  

81 = - 8 a 1 ~ 2 ( P 2 - P 1 ) w 4 2 ,  8 2  = -a1a2(P2-P,)2s2(a/w)2 

and F-1 = 1U,2g, W-1 = 1-1Uk2p-lT. 

When the velocities U, and U2 are constant (i.e. when E = 0) (3.8) shows that 
the interface is stable if 

h(a2 -a,) F-l+ a2B2 + h3a1 W-l > a2a,a2(Ul - U2)2. (3.9) 

If t,his expression is minimized with respect to the wavenumber a, then the 
instability is suppressed for 

B2 + 2{a,(a2 - a,) F-l W-l}B > alcx2(Ul - U2)2. (3.10) 

In the absence of surface tension this reduces to the standard (hydromagnetic) 
Kelvin-Helmholtz stability criterion (Chandrasekhar 1961, p. 51 1). 

Returning to the time-dependent problem, as described by (3.8), the case of 
most interest is that arising when the unsteady component of the basic flow is 
small compared with the steady component. Thus, in the special case 

IP2-P118 1, 

for which the difference velocity Ul(t) - U2(t) does not depart greatly from its 
mean, (3.8) may be approximated by the Mathieu equation 

( d 2 g p )  + (e, + 28, c o ~  2.i) g = 0, (3.11) 

where now 8, = (410)~  [h(a, - al) F-l+ a2B2+ h3a1W-l - 4a2a1a2], 

81 = - 8a,az(P2 - P 1 ) + W 2 .  

Mathieu’s equation has received considerable attention in the literature (see, for 
example, McLachlan 1947). In particular, the stability regions of the Mathieu 
equation are known and, for convenience, are shown in figure 1. It may be seen 
from figure 1 that instabilities are possible whenever 8, = n2, for integer n. 
However, in a real fluid, where dissipative effects such as viscosity and con- 
ductivity are operative, only the subharmonic response is likely to be significant. 

t Note the difference in notation: in Kelly the index 1 refers to the lower fluid and 
2 t o  the upper fluid. 
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FIGURE 1. Stability diagram for Mathieu’s equation. 
The stable regions are shown hatched. 

We shall therefore only consider the stability region (of figure 1) that is bounded 
by 8, + 1 & 8,. Thus, for small 8, the subharmonic instability is given by 8, = 1, 

i.e. by i w z  = h(a,-al)I1’-l+a2~2+~3a,W-l-4a2ala2. (3.12) 

When 8, + 1 the unstable solution of (3.11) behaves like exp (81 0, IS) for 
small lBll (see Whittaker & Watson, p. 424). Thus, the growth rate (in terms of 
the t variable) for the subharmonic response is 

tpll w = 2%a,lp2 - - p , p / w ,  (3.13) 

where w is given by equation (3.12).7 Thus the effect of the magnetic field enters 
purely through (3.12), and therefore to determine this effect it is sufficient to 
consider the behaviour of w. However, an inspection of (3.12) shows that no 
unexpected features arise from inclusion of the magnetic term: it simply causes 
an increase in w and a decrease in the growth rate. Clearly, the general features 
of w as a function of wavenumber are as indicated in Kelly (see his figure 2 and 
equation (3.20)), and so no further investigation is warranted. 

4. Poorly conducting fluid 
When R, -g I equation (2.4) may be approximated by (Stuart 1954; Hains 

iav + R,1 A$ = 0, 

LAW - ia(awIay2) 2, - ~ ~ A z R , V  = 0. 

(4.1) 

(4.2) 

1965) 

which when combined with (2.5) gives 

Note that the Alfvh number and the magnetic Reynolds number now enter 
the problem in the form of a single ‘interaction’ parameter N = A2Rm. 

which has a slight error : u-4 should read u-l. 
t Equation (3.13) is the corrected (non-dimensional) form of (3.22) in Kelly (1965), 
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The boundary conditions appropriate to (4.2), for the profile (2.6), are readily 
found (in a manner similar to that used in the previous section): 

(a )  v-+O as lyl-+co; 
(dqdt)+iaU,!L y = o + ,  

(b )  v(O,t) = {(dt/dt) + i.U2(, y = 0- ;  

( c )  rP4avlaY)l = 0. 
Our problem is to solve (4.2), with a2U/ay2 = 0, in the regions y > 0, y < 0, using 
conditions (a)-@) to match the solution across the interface. 

Two alternative expansion procedures will be used, each giving a different 
range of validity. A complete solution, valid for an unrestricted range of para- 
meters, of the poorly conducting fluid problem is desirable but owing to the 
complexity of the problem approximate techniques seem inevitable. 

4.1. Expansion in N 

We consider a formal expansion of the type 
m m 

v(y, t )  = c Njw(j)(y, t ) ,  <(t) = c N p ) ( t ) .  (4.3) 
f = O  j=O 

If these expressions are substituted into (4.2) and also into the boundary condi- 
tions (a)-(c), then by equating corresponding powers of N we may obtain an 
infinite set of equations for the infinite number of unknowns do), dl), d2), . . . , 
Equating the zero-order terms (which corresponds to setting N = 0 )  gives, after 
suitable re-arrangement of terms, an equation for t ( O ) .  In  a similar fashion we 
may obtain equations for [(I), [(z), . . . . We shall assume that N < 1 and that an 
investigation of only the first-order equations (i.e. neglecting terms of order N 2 )  
is sufficient to determine the stability nature of the interface. 

The procedure outlined above leads (after some algebra) to the equation 

-1 ia3 + 'La a,-+aa,- at -a2 (a lU2 ,+a2U~)+~2(u l+u2)N  t-= 0, (4.4) I ( 2 "9 
where = J2R,. 

The substitution 

~ ( t )  = t(t) exp( -Jt (icr(a, U, + a2 UJ + (4.5) 
0 

reduces (4.4) to an equation of the Hill type: 

where .i = got and 
(d2.QdP) + (ao + 2q, COS 2.i + 2q, cos 4.f) 5 = 0, (4.6) 

4 2  = - a2P,Pzs2(P2 - P l ) 2 / ~ ~ 2 ( P z  + P d 2 h  
Note that qo and q1 are complex and q2 6 0. 
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The solution of (4.4) may be readily described in two special cases. If the fluid 
is non-conducting (so that 3 = 0), then (4.4) reduces to (3.6) (with A2 = 0) and 
is therefore covered by the discussion in § 3. Also, in the absence of stratification 
(i.e. for p1 = p2) (4.6) reduces to 

It is clear from (4.7), considered in conjunction with (4.5), that the magnetic field 
cannot suppress the instability. 

exp (vb) and 
q52(r) exp ( - vb), where q51 and q52 are periodic functions of b, as the forms of the 
fundamental solutions of (4.6). The characteristic exponent v depends upon 
q,,, q1 and q2 and is in general complex. We are interested in the growth of solutions 
of (4.6) and, therefore, in the real part of v. It is clear that there is always a 
growing mode if Re(v), the real part of v, is non-zero. This growth factor 
exp (31 Re (v) lot) must be compared with the damping term 

exp [ - (a2A2Rw,t)/(4A2)] 

which arises from the transformation (4.5). Thus, there is always an unstable 

Floquet theory (Whittaker & Watson 1969, p. 412) gives 

mode if 2h201Re(v)l > a2E. 
In  order to obtain any insight into the effect of a magnetic field on the time- 

dependent Kelvin-Helmholtz instability in a poorly conducting fluid it is there- 
fore necessary to determine the real part of the characteristic exponent v. Hill's 
method shows that v is given by the equation 

cosh (nu) = 1 - 2Asin2 (&rq$), (4.9) 
where A is an infinite determinant whose elements are functions of q,,, q1 and qz 
(see Hill 1886; Whittaker & Watson 1969, p. 415). Note that (4.9) implies that 
cosh (nu) is real if qo, ql and q2 are real. Therefore, if q,, and q1 are real (i.e. if 
E(p2 -pl) = 0) then either the real part of v is zero, or the imaginary part of v is 
an integer. 

Equation (4.9) for the determination of v is still intractable because of the 
difficulty in calculating the determinant A. Hill (1886) has obtained an approxi- 
mate expression for A which, in our notation, is 

A = 1+nq2,cot (&rq$)/{qt(l-q,,)} (qo + 1). (4.10) 

The terms neglected are of order qf, qg, q:q2 and higher. Note that the accuracy 
of (4.10) is improved for small ~ I p ~ - p ~ 1 ;  if pz = p1 then A = 1. 

Thus we find that 
cosh(nv) = cos(nq~)-nq2,sin(nq,)/{q,,(1 a +  -qo)}+O{e4(p2-pl)4}. (4.11) 

If, further, we neglect terms of order e2(p2-pl)2 then (4.11) gives 

. a 2 i a ~ ( p 2 - p 1 )  azYz 16A2p1p2\4 av & - ' 
P1+P2 

(4.12) 

where, in taking the square root, the root with positive real part is selected. 
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If (4.12) is substituted into condition (4.8) and the resulting expression simpli- 
fied it becomes clear that there is always an unstable mode: the magnetic field is 
unable to eliminate the instability completely. Under the assumptions made in 
reaching this conclusion this is to be expected. A more accurate representation 
of the stability/instability regions may be obtained by investigating (4.11) 
instead of the approximation (4.12). This would clearly entail a more detailed, 
possibly numerical, discussion. However, in view of the assumptions made in 
reaching (4.11) such an investigation does not seem worth while. 

4.2. Expansion in E 

The approximate solution presented in 3 4.1 suffers from the rather severe restric- 
tion imposed by the condition N < 1, though this does cover the case of Alfvh 
number of order unity. A solution valid for arbitrary N is therefore desirable. 
However, in view of the obvious difficulty in solving (4.2) subject to conditions 
(a)-(c) it is unlikely that an analytical solution can be found without some degree 
of approximation. One case of interest is that arising when the amplitude of the 
basic flow oscillation is small compared with the mean flow. In  such a case an 
approximate solution can be found which does not restrict the parameter N .  

We expand v(y ,  t )  and <(t)  in powers of E :  

m 00 

v(y , t )  = Z€fVj(Y, t ) ,  = C i € % j ( t ) .  (4.13) 

The zeroth-order solution (found by setting e = 0) is readily shown to be of the 
form 

j = O  j = o  

AO,exp ( -  iact - n,y) ( y  > 0)) c AS exp ( - iact + moy) ( y  < o) ,  VO(Y,  t )  = (4.14) 

where A!, A! and c ( = c, + ici) are constants, and 

no = {A2 + iaN/(c - 1)}$, m, = {A2 + iaN/P(c + l)}t, p̂  = p2/p1. 

In  evaluating square roots the root with positive real part is chosen, thereby 
satisfying condition (a) .  The (complex) constant c is determined by the remaining 
boundary conditions, which, after a little algebra, give the dispersion relation 

xqC-  1)4 -p(c+  1 ) 4 } + i a ~ { ( c -  1 ) 3 - ~ ( ~ +  1)3} = 0. (4.15) 

For the case of equal densities (i.e. for j3 = I )  (4.15) reduces to the cubic 

4 ~ 3  + 3iMc2 + 4~ + iM = 0, M = aN/h2, (4.16) 

the roots of which are all purely imaginary. This equation, for the case of a two- 
dimensional disturbance ( A  = a) ,  has been discussed by Drazin (1960). Considera- 
tion of (4.16) shows that the flow is unstable for all M ,  and that the effect of the 
magnetic field is to make the flow less unstable. 

The stability characteristics of the more general case of a three-dimensional 
disturbance in a stratified fluid are described by (4.15), from which it is clear 
that c has a non-zero real part. The effect of a non-zero c, is to introduce an 
oscillatory term in the time dependence of the (zeroth-order) disturbance, and 



74 B. Roberts 

as such does not affect the stability nature of the basiceflow. The role of the magnetic 
field for a three-dimensional disturbance is determined by the parameter M :  

M = aN/A2 = (N/a)cos26' 6 N / E  (0 6 0 < in-), (4.17) 

where 0 is the angle the direction of propagation of the disturbance makes with 
the basic flow. Now for a two-dimensional disturbance the effect of an increase 
in M is to reduce the growth rate of the instability. So for the three-dimensional 
case the effect of the field is also reduced in comparison with that for its two- 
dimensional counterpart: the field is a 'more efficient stabilizer' of two- 
dimensional disturbances than of three-dimensional ones. 

The first-order problem (found by neglecting terms involving e2) reduces to 
the solution of the equations 

( ~ - i a ) ( ~ - A 2 * 1 ) - - p a 2 ~ v l  1 = -iap,cosot (y < 0)) (4.19) 

subject to the conditions 

( A )  v,+0 as Iyl+oo; 
( B )  v,(0 + ) t )  = (d[,/dt) + iat, + 4p2(Ay -A!)  e-iactcos ot, 

v,(0 - , t )  = (dCl/dt) - ia[, + +p,(Aq -A!)  e-iactcos w t ;  

(C) [PI (g+ia)  ~ + i a p , p , c o s w t ( $ J ) ]  aY 1/=0+ 

The system defined by equations (4.18) and (4.19) and conditions (A)-(G) has 
a solution of the form 

(4.20) 

where a and b are constants. The details of this solution need not be given; it is 
sufficient to note that the stability (to first order) is determined by the nature 
of c, which is given by (4.15). 

It is of interest to compare the growth rate of the unstable mode as given by 
the analyses of $54.1 and 4.2. The region of common validity is defined by the 
conditions N < 1, Iep2-eplI < 1. Equation (4.12) combined with (4.5) shows 
that the unstable mode grows exponentially with exponent aci t ,  ci being given by 

ci .I: g433 - M ) / (  1 + 6). (4.21) 

Alternatively, this result may be deduced from (4.15), thereby demonstrating 
the agreement of the procedures of $ 5  4.1 and 4.2 in the common domain. When 
j? = 1 equation (4.21) shows that for the case of equal densities 

1 - e-iact 
1 - ( f ( y )  cos wt + g(y) sin wt>, 
= e-iact (a cos wt + b sin wt) ,  

C . &  L .  1 - -  :M, 

which is in agreement with the complete solution provided by (4.5) and (4.7). 
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5. Concluding remarks 
We have considered the effect of a magnetic field on the stability of a time- 

dependent velocity profile which has a discontinuity at  y = 0. The results 
obtained from use of this profile are therefore only applicable to a realistic 
physical situation in the limit of small wavenumber. In the discussion of the 
magnetic effects we considered two limiting cases: that of a perfectly conducting 
fluid and that of a poorly conducting fluid. 

In  a perfectly conducting fluid the magnetic lines of force are ‘frozen ’ into the 
fluid. This tends to give the fluid a degree of rigidity with the result that the 
field is, in general, a damping influence on the fluid motion. In  the steady case 
this damping effect is such that the magnetic field is able to suppress the Kelvin- 
Helmholtz instability entirely for sufficiently strong fields. In  the unsteady case 
the field acts so as to reduce the extent of the instability but, in sharp contrast 
to the steady case, it is unable totally to suppress the instability, whatever the 
magnitude of the magnetic field. 

In  the case of a poor conductor the magnetic field lines are no longer ‘frozen in’ 
and may, in fact, slip through the fluid. As a consequence the field is unable to 
suppress the instability. 

The case of a basic flow with an unsteady component that is small compared 
with the steady component is of particular interest both from a physical stand- 
point and a theoretical one. Theoretically, such a case is amenable to approximate 
analysis and readily yields information on the stability of the basic flow. Practi- 
cally, such a case is of interest as unsteady flows often arise in this manner: a small 
oscillation (possibly from an external source) affects the basic steady flow. The 
problem may also be of interest in the theory of turbulence, as is the case in the 
problem investigated by Greenspan & Benney (1963). For these reasons the case 
of a small amplitude modulation has been considered in some detail in $3 3 and 4. 
(However, it must be stated that a discussion of large amplitude effects is also of 
some interest, and therefore a complete solution of (4.2) would be desirable.) 

Two factors are involved in the discussion of the stability of the problem 
considered in this paper: first, the role of the magnetic field and second, its inter- 
action with the applied oscillation in the basic flow. In  partial analogy with the 
pendulum, which may be stabilized or destabilized by an applied oscillation, the 
role of the oscillatory component in the basic flow is to induce instability into an 
otherwise potentially stable situation (given a sufficiently large magnetic field). 
Again, the oscillatory component in the basic flow drives the instability and this 
supply of energy ensures that the flow is unstable irrespective of the magnetic 
field. 

Finally, the question of the behaviour of the system in the limit of infinite 
magnetic field is of interest. For a poorly conducting fluid an examination of 
(4.16) shows that for the case of equal densities c - i43, as M - t  CO. Thus, in the 
limit of infinite magnetic field (i.e. as H,-+CO) there exists an unstable mode 
growing like exp(at143) for non-zero wavenumber. In  the case of a perfectly 
conducting fluid there exists an unstable mode (as may be seen from figure 1)  in 
the limit Oo+ co, provided O1 += 0. So, in the limit H, -+ co there exists an unstable 
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mode with non-zero wavenumber. Thus, in the limit H, + co, unstable modes 
with non-zero wavenumbers exist in both ranges of conductivity considered in 
this paper. 

I would like to  thank Dr R. C. Hewson-Browne and Dr C. Sozou for helpful 
discussions during the course of this work. 
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